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Abstract

In this paper, we introduce two classes of indices which can be used to measure
the market perception concerning the degree of dependency that exists between a
set of random variables, representing di¤erent stock prices at a �xed future date.
The construction of these measures is based on the theory of comonotonicity. Both
types of herd behavior indices are model-free and risk-neutral, derived from avail-
able option data. Depending on its particular de�nition, each index represents a
particular aspect of the market sentiment concerning future co-movement of the
underlying stock prices.
Keywords: comonotonicity, herd behavior, HIX, index options, market fear,

model-free measures, VIX.

1 Introduction

Never put all your eggs in one basket. Most investors are well aware of this advice and often
prefer to invest in a blend of di¤erent stocks. This is generally considered as a prudent
and risk-reducing strategy because losses caused by some of the assets may be countered
by gains caused by others. However, periods of high market stress are typically linked to
high levels of co-movement, implying that the diversi�cation bene�t is evaporating when
it is needed most. Having a notion about today�s level of co-movement (which we will
also call the degree of herd behavior) may give market participants the opportunity to
take necessary cautionary actions.

One possible way to investigate the degree of herd behavior between stock prices is to
consider the historical performance of the multivariate time series of observed prices; see
e.g. Kleykamp and Liu (2012), Harmon et al. (2011) and Bekaert et al. (2009). However,
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as the dynamics of the co-movement between stock prices is changing over time, estimating
future herd behavior based on historical data is a hard, if not impossible task.

In this paper, we take a prospective view and use currently observed option prices
to gain insight in the level of herd behavior in the market over a given time interval.
The prices of publicly traded options on an index (such as the Dow Jones Index) and on
its underlying stocks contain information about the market�s perception of future price
co-movements. As such, an appropriately de�ned estimate of the degree of herd behavior
based on such a set of observed option prices may reveal information about the view of the
market concerning future co-movement. An implied degree of herd behavior that can be
determined in a fast and robust way will allow us to monitor the evolution of the market
perception concerning herd behavior in real time.

The CBOE S&P 500 Implied Correlation Index is a quoted measure for the implied
degree of co-movement, see Chicago Board Options Exchange (2009). A similar corre-
lation measure for the Dow Jones is studied in Skintzi and Refenes (2005). Linders and
Schoutens (2014b) propose a framework for the robust measurement of implied correlation
levels between stocks composing a stock market index. The above-mentioned correlation
measures can be determined from available option data. A drawback of these measures
is that they are not model-free, as they are built on the assumption that the dynamics
of stock prices is described by a multivariate lognormal distribution. It is well-known
that this Gaussian assumption is often not an adequate approach to describe multivariate
stock price dynamics. Moreover, all these measures are based on pairwise correlations,
which may fail to capture the degree of herd behavior and could even give misleading
signals; see e.g. Embrechts et al. (1999), Dhaene, Linders, Schoutens and Vyncke (2012)
and Linders and Schoutens (2014b). A study of implied correlation for stock price models
with non-normal marginal logreturns was conducted in Fonseca et al. (2007), Garcia et al.
(2009), Tavin (2013), Austing (2014) and Linders and Schoutens (2014a).

In this paper, we will follow another road and use the concept of comonotonicity to
de�ne alternative measures for the implied degree of co-movement between stock prices.
Roughly stated, the random variables (r.v.�s) representing the di¤erent stock prices in one
month from now are said to be comonotonic in case they move in unison and behave like a
single asset, not allowing for any diversi�cation. In reality, stock prices will typically not
move in a perfect comonotonic way and as such, a stock market is not exhibiting perfect
herd behavior. Nevertheless, it is possible to construct the hypothetical comonotonic mar-
ket situation out of the available stock option data. This arti�cial comonotonic market
situation is then used as a point of reference, allowing us to measure the �distance�be-
tween the real (observed) market situation and the comonotonic (non-observed) extreme
case.

In Hobson et al. (2005) and Chen et al. (2008), it is explained how to determine in-
dex option prices corresponding to the extreme comonotonic market situation, from the
prices of options written on the components of this stock market index. The observed in-
dex option prices are constrained from above by the (arti�cially constructed) comonotonic
index option prices. Moreover, the gap between the observed index option curve, repre-
senting the real market situation, and the comonotonic index option curve, representing
a market with perfect herd behavior, reveals information about the market perception
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concerning the strength of the co-movement present in the market. This gap is called the
comonotonicity gap. A small gap might be interpreted as a sign for an almost comonotonic
market situation where all stocks are moving together and almost no diversi�cation is pos-
sible. A large gap, on the other hand, indicates that a high degree of diversi�cation is
possible. The terminology comonotonicity gap was �rst introduced in Laurence (2008).
Dependence measures based on the comonoticity gap in a general setting, not related to
option pricing, are investigated in Koch and De Schepper (2011) and Dhaene et al. (2014).

We propose a new methodology for capturing the comonotonicity gap in stock markets
in a single and intuitive real number, called a herd behavior measure. First, we use the
observed values of the stock market index (also called index) options expiring at a �xed
date to construct an estimate for the swap rate with �oating leg a convex function of
the index value paid at that same date. The VIX formula, see Chicago Board Options
Exchange (2003) and Carr and Wu (2006), turns out to be a special case of this general
setting. In a second step, we determine the comonotonic index option curve, which rep-
resents the situation where all stocks in the index move perfectly together. The swap
rate in the comonotonic situation is an upper bound for the real swap rate. We de�ne
the comonotonicity gap as the ratio between the swap rate and its comonotonic upper
bound. Any convex function can be used to construct a model-free measure for the im-
plied degree of co-movement, implying a whole class of herd behavior measures. The Herd
Behavior Index (HIX) de�ned in Dhaene, Linders, Schoutens and Vyncke (2012) and the
Comonotonicity Index (CIX), de�ned in Dhaene, Dony, Forys, Linders and Schoutens
(2012), turn out to be particular members of this class.

A second way of measuring herd behavior in stock markets that is presented in this
paper is based on the concept of distorted expectations. We �rst show how to determine
the distorted expectation of the stock index from the observed index option prices. Next,
we determine the distorted expectation corresponding to the comonotonic situation. A
second class of herd behavior measures is then de�ned by comparing the distorted ex-
pectation of the stock market index with its comonotonic modi�cation. Each concave
distortion function can be used to construct a model-free measure for the implied level
of co-movement. Notice that the members of this second class of herd behavior measures
can be considered as model-free counterparts of the Sector Diversity Index (SDI) de�ned
in Madan and Schoutens (2013).

This paper is organized as follows. In Section 2 we present convex order and its
connection with upper and lower tail transforms, as well as the notion of comonotonicity.
The �nancial market we assume throughout the paper is introduced in Section 3. Section 4
describes how to determine the comonotonic market situation from observed stock options.
We also introduce the comonotonicity gap and illustrate that during periods of increased
market fear, this gap is tightening. The classes of herd behavior measures based on swap
rates and on distorted expectations are de�ned in Section 5 and in Section 6, respectively.
Section 7 concludes the paper.
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2 Tail transforms, convex order and comonotonicity

In this section, we present several concepts and results that will be used throughout the
paper.

2.1 Tail transforms

The inverse of the cumulative distribution function (cdf) of a random variable (r.v.) X
is denoted by F�1X . It is de�ned by

F�1X (p) = inf fx 2 R j FX(x) � pg ; p 2 [0; 1] ; (1)

with inf ; = +1, by convention. An alternative inverse of FX is de�ned as follows:

F�1+X (p) = sup fx 2 R j FX(x) � pg ; p 2 [0; 1] ; (2)

where sup ; = �1, by convention. The inverses F�1X (p) and F�1+X (p) only di¤er on
horizontal segments of the distribution function FX . Notice that

F�1X (p) = �F�1+�X (1� p) : (3)

For any number � 2 [0; 1], the alpha inverse F�1(�)X is de�ned as a linear combination of
the inverses (1) and (2):

F
�1(�)
X (p) = �F�1X (p) + (1� �)F�1+X (p) ; p 2 (0; 1) : (4)

All r.v.�s that will be considered in this paper are assumed to have a �nite mean. The
Tail Value-at-Risk at level p, notation TVaRp [X], of a r.v. X is de�ned as follows:

TVaRp [X] =
1

1� p

Z 1

p

F�1X (q) dq; p 2 (0; 1) : (5)

TVaRp can be considered as a measure for the upper tail of the cdf FX of X. It is linked
with the upper tail transform E [(X �K)+] for an appropriate choice of K:

TVaRp [X] = F
�1(�)
X (p)+

1

1� pE
h
(X � F�1(�)X (p))+

i
; � 2 [0; 1] and p 2 (0; 1) , (6)

see e.g. Dhaene et al. (2006).

The Left Tail Value-at-Risk at level p of X is denoted by LTVaRp [X]. It is de�ned by

LTVaRp [X] =
1

p

Z p

0

F�1X (q) dq, p 2 (0; 1) : (7)

LTVaRp can be considered as a measure for the lower tail of the cdf FX . Notice that

LTVaRp [X] = �TVaR1�p [�X] : (8)
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Taking into account (3), (6) and (8), we �nd the following expression which relates
LTVaRp [X] with the lower tail transform E [(K �X)+] for an appropriate choice of K:

LTVaRp [X] = F
�1(�)
X (p)� 1

p
E
h
(F

�1(�)
X (p)�X)+

i
; � 2 [0; 1] and p 2 (0; 1) . (9)

Finally, notice that TVaRp [X] and LTVaRp [X] are connected by the following expres-
sion:

pLTVaRp [X] + (1� p)TVaRp [X] = E [X] , p 2 (0; 1) : (10)

2.2 Convex order and comonotonicity

The variability of (the cdf of) two r.v.�s can be compared via the notion of convex order;
see e.g. Shaked and Shanthikumar (2007) or Denuit et al. (2005). Recall that convex
order between two r.v.�s X and Y , notation X �cx Y , is de�ned by

X �cx Y ,
�
E [(X �K)+] � E [(Y �K)+] , for all K 2 R;
E [(K �X)+] � E [(K � Y )+] , for all K 2 R: (11)

Intuitively, relation (11) indicates that Y has larger lower and upper tails than X. This
means that X �cx Y can indeed be interpreted as �Y is more variable than X�.
Two r.v.�s X and Y can only be ordered in convex order in case E [X] = E [Y ].

Moreover, it is straightforward to prove that

X �cx Y ,
�
E [(X �K)+] � E [(Y �K)+] , for all K 2 R;
E [X] = E [Y ] : (12)

Convex order can also be characterized in terms of TVaR�s and LTVaR�s:

X �cx Y ,
�
TVaRp [X] � TVaRp [Y ] , for all p 2 (0; 1) ;
LTVaRp [Y ] � LTVaRp [X] , for all p 2 (0; 1) : (13)

Consider a random vector X = (X1; : : : ; Xn) with marginal distributions denoted by
FXi, i = 1; 2; : : : ; n. The comonotonic modi�cation of X, notation X

c, is de�ned by

Xc d
=
�
F�1X1 (U) ; : : : ; F

�1
Xn
(U)
�
; (14)

where d
= stands for equality in distribution and U is a r.v. which is uniformly distrib-

uted over the unit interval. The components of the random vector Xc are said to be
comonotonic. Characterization (14) shows that a random vector is comonotonic if its com-
ponents are jointly driven up or down by a single stochastic risk factor. Therefore, we say
that Xc exhibits perfect herd behavior. For an introduction to the theory of comonotonic-
ity, we refer to Dhaene et al. (2002a). Financial and actuarial applications are described
in Dhaene et al. (2002b). An updated overview of applications of comonotonicity can be
found in Deelstra et al. (2011).
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Let us introduce the notations

S = w1X1 + w2X2 + : : :+ wnXn (15)

and
Sc = w1F

�1
X1
(U) + w2F

�1
X2
(U) + : : :+ wnF

�1
Xn
(U) ; (16)

for the weighted sums of the components of X and Xc, with deterministic positive weight
factors wi. It can be proven that

S �cx Sc; (17)

which means that in the class of all random vectors with given marginal distributions, a
comonotonic situation leads to a weighted sum which is largest in convex order.

3 The stock market

3.1 Stocks, the stock market index and a �nite market of options

We consider a �nancial market1 where n (dividend or non-dividend paying) stocks, labeled
from 1 to n, are traded. Suppose that the current time is t = 0: The price at time t,
0 � t � T < +1, of stock i is denoted by Xi (t). Unless otherwise stated, we will always
silently assume that Xi (t) � 0 for all i and that its �rst and second order moments are
�nite. Apart from the stocks, there is a stock market index of which the price is a linear
combination of the prices of the n underlying stocks. Denoting the price of the index at
time t by S (t), 0 � t � T , we have that

S (t) = w1X1 (t) + w2X2 (t) + : : :+ wnXn (t) ; (18)

where wi; i = 1; 2; : : : ; n; are positive weights that are �xed up front.

The time-0 prices of the European-type index call and put options with strike K
and maturity T are denoted by C [K;T ] and P [K;T ], respectively. Further, the time-0
prices of European-type calls and puts on stock i are denoted by Ci [K;T ] and Pi [K;T ],
respectively.

The �nancial market is assumed to be arbitrage-free and there exists a pricing measure
Q, equivalent to the physical probability measure P, such that the current price of any
pay-o¤ at time T can be represented as the expectation of the discounted pay-o¤. In this
price-recipe, the discounting factor is e�rT , where r is the continuously compounded time-
0 risk-free interest rate, while expectations are taken with respect to the pricing measure
Q. For simplicity reasons, we assume deterministic interest rates. Notice however that
all results hereafter remain to hold in case interest rates are stochastic, provided the
discounting factor e�rT is interpreted as the time-0 price of a T -year zero coupon bond

1We use the common approach to describe the �nancial market via a �ltered probability space�

;F ; (Ft)0�t�T ;P

�
.

6



and the pricing measure Q is interpreted as a �T -year forward measure� instead of a
�risk-neutral measure�, see Chen et al. (2015).

The no-arbitrage condition gives rise to the following expressions for the option prices:

Ci [K;T ] = e�rTE[(Xi(T )�K)+]; (19)

Pi [K;T ] = e�rTE[(K �Xi(T ))+]; (20)

and

C [K;T ] = e�rTE
�
(S(T )�K)+

�
; (21)

P [K;T ] = e�rTE
�
(K � S(T ))+

�
: (22)

In formulae (19), (20) and (21), (22), as well as in the remainder of this text, ex-
pectations (distributions) of functions of (X1 (T ) ; : : : ; Xn (T )) have to be understood as
expectations (distributions) under the Q-measure. Furthermore, the notations FXi(T ) and
FS(T ) will be used for the time-0 cdf�s of Xi (T ) and S (T ) under the measure Q.

In order to avoid unnecessary overloading of the notations, hereafter we will omit the
�xed time index T when no confusion is possible. For example, we will write Xi; Ci [K]
and FXi (x) for Xi (T ) ; Ci [K;T ] and FXi(T ) (x), respectively.

Throughout this paper, we will assume that market participants have only access to
a �nite number of European-type options with maturity T . In particular, for any stock i,
the strikes of the traded puts and calls are denoted by Ki;j, j = �li;�li+1; : : : ; hi�1; hi,
with

0 = Ki;�li < : : : < Ki;�1 < Ki;0 � E [Xi] < Ki;1 < Ki;2 < : : : < Ki;hi < Ki;hi+1; (23)

where Ki;hi+1 = F�1Xi (1) is assumed to be �nite. In reality, stock and call options may
have an unknown upward potential. However, for numerical reasons, we will enforce a
�nite upper bound which can be chosen arbitrarily large.The strikes of the traded puts
and calls on the stock index are denoted by Kj, j = �l; : : : ; h; with

0 � K�l < K�l+1 < : : : < K0 � E [S] < K1 < K2 < : : : < Kh < Kh+1; (24)

where Kh+1 = F
�1
S (1). Note that as long as there is at least one strike K for which the

prices C [K] and P [K] are traded, the forward rate E [S] can be calculated in a model-free
way using the put-call parity. In practical situations, we follow the methodology proposed
in Chicago Board Options Exchange (2003) to determine the forward rate of the stock
market index:

E [S] = erT (C [K�]� P [K�]) +K�; (25)

with
K� = arg min

K2fK�l;:::Kh_1g
jC [K]� P [K]j : (26)

For more details, see also Linders et al. (2012). A similar approach is followed for deter-
mining the forward rate of the individual stocks.
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3.2 Index option prices and convex order

Consider two points in time, t and t0, with 0 � t � t0. Let S and S 0 be the r.v.�s
representing the time (t+ T )- and time (t0 + T )- index prices and E [S] and E0 [S 0] the
T -year forward prices, seen from the viewpoint of time t and time t0, respectively. The
corresponding forward de�ated time (t+ T )- and time (t0 + T )- index prices are de�ned
by S

E[S] and
S0

E0[S0] , while the respective European-type call options on the index, with
time-to-maturity T and strike K, are denoted by C [K] and C 0 [K]. From (12) it follows
that

S

E [S]
�cx

S 0

E0 [S 0]
, C [kE [S]]

E [S]
� C 0 [kE0 [S 0]]

E0 [S 0]
, for all k � 0: (27)

The non-negative real number k in the right-hand side inequality in (27) is called the
moneyness of the option under consideration. From (27), it follows that, having arrived
at time t0; one can search for eventual convex order relations between de�ated index prices
S
E[S] and

S0

E[S0] by comparing the corresponding T -year index option curves. An eventual
convex order will indicate an increased degree of variabilty of the T -year stock index price
at time t0; compared to time t. Such an increased level of index variability can be caused
by an increased level of variability of the individual stocks, an increased co-movement
between the individual stocks or a combination of these two e¤ects. A related study was
conducted in Carr et al. (2011), where the authors consider the monotonicity in convex
order by comparing options on standardized realized variance for di¤erent maturities.

In order to illustrate this procedure, let us look for eventual convex order relations
between de�ated Dow Jones index prices. Recall that the Dow Jones Industrial Average
is a price-weighted index composed of the 30 largest, most liquid NYSE and NASDAQ
listed stocks. Options with the DJ index as underlying are called DJX options and are
based on 1/100th of the current value of the DJ.

Figure 1 shows the values C[kE[S]]
E[S] (closing mid-prices) for the traded options with

time-to-maturity T = 30 days, for trading days April 17, 2008 (dots), October 23, 2008
(crosses), November 20, 2008 (circles) and December 18, 2008 (plusses). From Figure 1,
we can conclude that during the period October - December 2008, the de�ated index prices
are larger in convex order than during April 2008. Furthermore, the month November
2008 was the most extreme one, in terms of convex order.

4 Perfect herd behavior and the comonotonicity gap

4.1 Comonotonic index option prices

In this section, we show how to construct a synthetic T�year stock market index price
with a risk-neutral cdf which is maximal in convex order, in the class of all risk-neutral dis-
tributions for the T�year stock market index price which are consistent with the observed
stock option data.

Recall that we assumed that for each stock option curveCi, only the points (Ki;j; Ci [Ki;j]) ;
j = �li; : : : ; hi+1, are observed, see (23). Following Hobson et al. (2005) and Chen et al.
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Figure 1: The index option curve C[kE[S]]
E[S] for di¤erent moneyness values k:

(2008), we approximate the partially known convex call option curve Ci by the piecewise
linear convex curve Ci which connects its observed points.

Let us introduce the notation X i for a r.v. with cdf equal to the cdf implied by the
option curve Ci. This cdf FXi

can be considered as an approximation for the unknown
risk-neutral pricing cdf FXi. It can be determined from the observed stock option prices
via

FXi
(x) = 1 + erT C

0
i[x+]; (28)

where, C
0
i[x+] is the right derivative of Ci at x, see e.g. Breeden and Litzenberger (1978).

Notice that using the put-call parity, expression (28) can be recast in a relation for the
risk-neutral cdf FXi

in terms of the observed put option prices.

One can easily verify that the cdf FXi
de�ned above, is given by

FXi
(x) =

8>><>>:
0 if x < 0;

1 + erT
Ci [Ki;j+1]� Ci [Ki;j]

Ki;j+1 �Ki;j

if Ki;j � x < Ki;j+1;
(j = �li; : : : ; hi + 1)

1 if x � Ki;hi+1:

(29)

In the sequel, we will always assume that FXi
is strictly increasing in the traded

strikes whenever the cdf is strictly positive in this strike price, in the following sense: if
FXi

(Ki;j) > 0; then FXi
(Ki;j) > FXi

(Ki;j�1) for j = �li; : : : ; hi + 1, with Ki;�li�1 = �1
by convention. If this condition is initially not satis�ed, we decrease the set of observed
points until it is satis�ed. From (29) it follows then that for any j = �li; : : : ; hi + 1 and
q 2 (0; 1], the inverse F�1

Xi
is determined by

F�1
Xi
(q) = Ki;j; if FXi

(Ki;j�1) < q � FXi
(Ki;j). (30)
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Next, we introduce the r.v. S
c
, which is de�ned by

S
c
= F�1

X1
(U) + F�1

X2
(U) + : : :+ F�1

Xn
(U) . (31)

We will call S
c
the T�year comonotonic stock market index price. Its cdf can be deter-

mined from the marginal cdf�s FXi
. The comonotonic call and put option prices C

c
[K]

and P
c
[K] are de�ned by

C
c
[K] = e�rTE

h�
S
c �K

�
+

i
(32)

and
P
c
[K] = e�rTE

h�
K � Sc

�
+

i
; (33)

respectively.

The outcome of the comonotonic stock market index S
c
will never be observed. How-

ever, in the hypothetical case that the stock option curves are piecewise linear and more-
over, the time-T stock prices are comonotonic, the risk-neutral distribution of the time-
T index price will be equal to the distribution of S

c
. In this case, it turns out that

C [K] = C
c
[K] and P [K] = P

c
[K] for all strikes K. Notice that comonotonicity is

maintained under equivalent probability measures. The reachability of the comonotonic
market situation in the case of �nite stock option data is considered in Hobson et al.
(2005).

Obviously, in practice the pricing measure will never be such that the index option
curves coincide with C

c
[K] and P

c
[K]. However, the convex order relation

S �cx S
c
; (34)

a proof of which can be found in Chen et al. (2008), together with the convex order
characterization (11) implies that

C [K] � Cc [K] (35)

and
P [K] � P c [K] (36)

hold for any strike K � 0. This means that the comonotonic index option prices Cc [K]
and P

c
[K] are model-free upper bounds for the index option prices C [K] and P [K],

respectively.

The inequality (34) shows that for a given �nite set of stock option prices, the
comonotonic stock market index S

c
describes the extreme situation corresponding to

a maximal level of variability, expressed in terms of convex order. Indeed, any other fea-
sible market situation which is consistent with the observed stock option data will result
in an index S which will not exceed S

c
in convex order. The maximal level of volatil-

ity is attained when the market is pricing (multi-asset) derivatives using the cdf of the

comonotonic random vector
�
F�1
X1
(U); F�1

X2
(U); : : : ; F�1

Xn
(U)
�
.
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In the following theorem, the comonotonic call option prices C
c
[K] and P

c
[K] are

expressed in terms of observed stock option prices. Similar results can be derived for
comonotonic put option prices. A proof of this theorem can be found in Hobson, Laurence
and Wang (2005). A simpli�ed proof of this result, based on the decomposition formula
for stop-loss premiums of a comonotonic sum (see Dhaene et al. (2000)), can be found in
Chen et al. (2008).

Theorem 1 For anyK 2
�
F�1+
S
c (0); F�1

S
c (1)

�
, the comonotonic index option prices C

c
[K]

and P
c
[K] can be expressed as

C
c
[K] =

nX
i=1

wiCi [K
�
i ] ; (37)

P
c
[K] =

nX
i=1

wiP i [K
�
i ] ; (38)

with the strikes K�
i given by

K�
i = F

�1(�K)
Xi

(FSc(K)) ; i = 1; 2; : : : ; n (39)

and where �K is any element in [0; 1] satisfying

F
�1(�K)
S
c (FSc (K)) = K: (40)

When K =2
�
F�1+
S
c (0); F�1

S
c (1)

�
, the comonotonic prices C

c
[K] and P

c
[K] can be

determined in a straightforward way and coincide with the prices C [K] and P [K], re-
spectively. A detailed and robust step-by-step algorithm to determine the upper bounds
C
c
[K] and P

c
[K] in an e¢ cient way can be found in Linders et al. (2012).

In the above-mentioned paper, several known optimality results of the upper bounds
C
c
[K] and P

c
[K] are summarized. In particular, it is shown that C

c
[K] and P

c
[K] are

the least upper bounds for the respective index option prices, in the class of all pricing
models which are consistent with the observed stock option prices.

4.2 The comonotonicity gap

Laurence (2008) introduced the term comonotonicity gap to indicate the ratio between the
observed market price C [K], resp. P [K], and the comonotonic index option price C

c
[K],

resp. P
c
[K], for an appropriate choice of K. Obviously, the T -year comonotonicity gap

varies over time. A small gap indicates that the distance between the real market situation
and the theoretical comonotonic situation is small, which can be interpreted as a signal
for a market driven by the perception that stocks will move strongly together over the
next T years.
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Figure 2 shows out-of-the-money Dow Jones index option prices and their comonotonic
upper bounds on di¤erent trading days for the set of traded strikes. To be more precise,
for a moneyness k < 1; we compare the index put option prices P [kE[S]] with their
respective comonotonic modi�cations P

c
[kE[S]] ; whereas C [kE[S]] and Cc [kE[S]] are

used when k � 1: Hence, the options involved are all out-of-the money options, which
are in general more liquid than in-the-money options. Moreover, the prices of out-of-the
money options contain only time value and no intrinsic value. The options expire in 30
days. As before, the trading days under consideration are April 17, 2008, October 23,
2008, November 20, 2008 and December 18, 2008. From this �gure, one observes that
the distance between the two option curves as well as their height is changing over time,
indicating a changing degree of implied herd behavior.

The at-the-money comonotonicity gap is de�ned as

ATM comonotonicity gap =
C [K0]

C
c
[K0]

; (41)

where K0 is the largest traded strike not exceeding the index forward price E [S]. On
April 17, 2008, the at-the-money comonotonicity gap is 61:09%. The period October -
November 2008 is in the heat of the �nancial crisis, where obviously a high degree of herd
behavior was observed. In this period, the at-the-money comonotonicity gap is 82:90%
and 80:39% for October 23, 2008 and November 20, 2008, respectively. In December 18,
2008, we observe a comonotonicity gap of 75:58%; see Table 1.

The ratio Q
c
[kE[S]]

Q[kE[S]] for the traded strikes is shown in Figure 3, where

Q [K] =

�
P [K] ; if K < E[S];
C [K] ; if K � E[S]; and Q

c
[K] =

�
P
c
[K] ; if K < E[S];

C
c
[K] ; if K � E[S]:

Comparing Figures 2 and 3 shows that the conclusions drawn from these �gures are
similar. However, Figure 3 shows that November 2008 exhibits a lower degree of herd
behavior than October 2008 when we consider out-of-the money index put options (i.e.
when k < 1), whereas the opposite relation holds when comparing out-of-the money index
call options (when k � 1).
In Figure 1 , we showed that we have the following convex order relation:

April 08 �cx December 08 �cx October 08 �cx November 08:

However, if we compare the degree of herd behavior (using the ATM comonotonicity gap)
of these trading days, we �nd a di¤erent ordering:

April 08 �hb October 08 �hb November 08 �hb December 08:

where we use the notation T1 �hb T2 to indicate that the comonotonicity ratio is higher
at time T2 than at time T1. The observed di¤erence in the orderings is not necessarily a
contradiction. Indeed, convex order gives information about the variability of the T�year
index price, whereas the herd behavior ordering gives information about the distance
towards comonotonicity.
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Figure 2: Out-of-the-money index option prices (dots) and comonotonic out-of-the-money
index option prices (crosses) as a funtion of moneyness, for traded strikes.

In the following two sections, we propose two frameworks for quantifying the comonotonic-
ity gap in a more sophisticated way than via the ATM comonotonicity gap. These frame-
works are based on the idea that the relative distance of the observed index option
curve from its comonotonic counterpart reveals information about the strength of the
co-movement. Instead of comparing a particular index option with its comonotonic mod-
i�cation, we will use the full range of observed stock and index option prices to de�ne two
classes of implied indicators for the degree of herd behavior.

5 Swap rates and implied herd behavior

5.1 Swap rates in terms of observed option prices

Consider the swap contract of which the �oating leg pays the buyer (i.e. the long party)

the pay-o¤ u
�

S
E[S]

�
at time T , for some convex function u : [0;+1)! R. In exchange,

the �xed leg pays the seller the premium P (also called the swap rate) at time T . The
premium is agreed upon at the deal�s inception and is set such that the contract has price
0 at time 0:

0 = e�rTE
�
u

�
S

E [S]

�
� P

�
: (42)

This swap contract amounts to a T -year forward contract written on a convex function u
of the forward de�ated index price S

E[S] .
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Figure 3: The ratios Q
c
[kE[S]]

Q[kE[S]] as a function of the moneyness, for traded strikes.

Let us now assume that the derivative of u (right derivative in 0) is well-de�ned and
�nite on [0;+1), and that this derivative is absolutely continuous on [0;+1). In this
case, the swap rate E

h
u
�

S
E[S]

�i
can be expressed as

E
�
u

�
S

E[S]

��
� u (1)

=
erT

E[S]2

 Z E[S]

0

u00
�
K

E[S]

�
P [K] dK +

Z +1

E[S]
u00
�
K

E[S]

�
C [K] dK

!
; (43)

see e.g. Carr and Madan (2001) or Cheung et al. (2013). This is a model-free expression for
the swap rate, in terms of prices of put options with strikes smaller than or equal to E[S]
and call options with strikes larger than E[S]. Notice that E[S] is usually relatively close to
the current index price, implying that most options involved in (43) are out-of-the-money.

Our assumption that only a limited number of index options are traded, see (24),

implies that the swap rate E
h
u
�

S
E[S]

�i
cannot be determined from (43). Inspired by the

VIX methodology, we propose to approximate the integrals in (43), making use of the
available index option data.

Let us �rst introduce the notations �Kj, which are related to the strike grid:

�Kj =

8<:
K�l+1 �K�l; if j = �l;
Kj+1�Kj�1

2
; if j = �l + 1; : : : ; h� 1;

Kh �Kh�1; if j = h:
(44)
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Furthermore, we will use the notation Q [Kj] which is de�ned by

Q [Kj] =

8<:
P [Kj] ; if Kj < K0;

C[Kj ]+P [Kj ]

2
; if Kj = K0;

C [Kj] ; if Kj > K0:

(45)

Making use of the composite trapezoidal rule, we consider the following model-free
approximation for the forward rate E

h
u
�

S
E[S]

�i
in terms of observed index option prices:

E
�
u

�
S

E[S]

��
� u (1) � erT

E[S]2
hX

j=�l

u00
�
Kj

E[S]

�
�Kj Q [Kj]�

u00
�
K0

E[S]

�
2

�
E [S]�K0

E [S]

�2
:

(46)

In order to show how we arrive at this approximation, we �rst rewrite the sum of the
two integrals in (43) in the following way:Z K0

0

u00
�
K

E [S]

�
P [K] dK +

Z +1

K0

u00
�
K

E [S]

�
C [K] dK (47)

+

Z E[S]

K0

u00
�
K

E [S]

�
(P [K]� C [K]) dK:

The �rst two integrals in this expression are then approximated using the composite
trapezoidal rule. Assuming that P [K] is equal to zero in K�l � (K�l+1 �K�l), leads to
the following approximation for the �rst integral:Z K0

0

u00
�
K

E [S]

�
P [K] dK �

�1X
j=�l

�Ki u
00
�
Kj

E [S]

�
Q [Kj]+

K0 �K�1

2
u00
�
K0

E [S]

�
P [K0] :

(48)
Assuming that C [K] is equal to zero inKh+(Kh �Kh�1), we �nd a similar approximation
for the second integral in (47):Z +1

K0

u00
�
K

E [S]

�
C [K] dK � K1 �K0

2
u00
�
K0

E [S]

�
C [K0]+

hX
j=1

�Kj u
00
�
Kj

E [S]

�
Q [Kj] :

(49)

Furthermore, assuming that u00
�

K
E[S]

�
= u00

�
K0

E[S]

�
for K 2 [K0;E [S]] and taking into

account the put-call parity leads to the following approximation for the third integral in
(47): Z E[S]

K0

u00
�
K

E [S]

�
(P [K]� C [K]) dK � �e

�rT

2
u00
�
K0

E [S]

�
(E [S]�K0)

2 : (50)

Finally, assuming that K1�K0 = K0�K�1 and taking into account (47), (48), (49) and
(50), leads to the appproximation (46) for the swap rate.

The extra term
u00( K0E[S])

2

�
E[S]�K0

E[S]

�2
in (46) is a contribution due to the discretization

around the forward rate E [S]. Notice that in the approximation above, we silently assumed
that all second derivatives u00

�
Kj

E[S]

�
, j = �l; : : : ; h; are well-de�ned and �nite.
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5.2 Swap rates in case of perfect herd behavior

Let us now consider the comonotonic market situation. In this case, the swap rate is given
by E

h
u
�
Sc

E[S]

�i
, with Sc de�ned in (16).

Due to our assumption about the �nite number of traded stock options, see (24),

we are not able to determine E
h
u
�
Sc

E[S]

�i
. Therefore, we propose to approximate it by

E
h
u
�
S
c

E[S]

�i
, with S

c
de�ned in (31). Similar to (43), we �nd the following expression for

the comonotonic swap rate:

E

"
u

 
S
c

E[S]

!#
� u (1)

=
erT

E[S]2

 Z E[S]

0

u00
�
K

E[S]

�
P
c
[K] dK +

Z +1

E[S]
u00
�
K

E[S]

�
C
c
[K] dK

!
: (51)

This comonotonic swap rate can be interpreted as the swap rate that would arise in a
market with piecewise linear option curves and with comonotonic stock prices. Inspired
by (46), we approximate (51) in the following way:

E

"
u

 
S
c

E[S]

!#
� u (1) � erT

E[S]2
hX

j=�l

u00
�
Kj

E[S]

�
�Kj Q

c
[Kj]�

u00
�
K0

E[S]

�
2

�
E [S]�K0

E [S]

�2
:

(52)
In this expression, the �Kj are given by (44), while the Q

c
[Kj] are de�ned by

Q
c
[Kj] =

8><>:
P
c
[Kj] ; if Kj < K0;

C
c
[Kj ]+P

c
[Kj ]

2
; if Kj = K0;

C
c
[Kj] ; if Kj > K0:

(53)

Although the comonotonic index option curves C
c
and P

c
are not observed, Theorem

1 allows us to determine the Q [Kj] from the available stock option data. We can conclude

that (52) is a model-free approximation for the comonotonic swap rate E
h
u
�
S
c

E[S]

�i
in

terms of observed stock option prices.

5.3 Measuring the degree of herd behavior in terms of swap
rates

Consider two points in time, t and t0, with 0 � t � t0. It is well known that for any convex
function u, the following implication holds:

S

E[S]
�cx

S 0

E0[S 0]
=) E

�
u

�
S

E[S]

��
� E0

�
u

�
S 0

E0[S 0]

��
; (54)
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provided the expectations exist and where we use the notations and conventions intro-
duced in (27). This means that convex order between de�ated index price levels results
in an ordering of the corresponding swap rates. For the special case of a convex u with
an absolute continuous derivative, this implication follows from (11) and (43). Expression
(54) shows that the swap rate increases when the level of index variability increases. From

this observation we can conclude that for a convex function u, the swap rate E
h
u
�

S
E[S]

�i
could be interpreted as an indicator for the market perception concerning the variability
of the stock market index price S over the coming T years. In Section 5.4.3, we will con-
sider the particular choice of u for which the approximation (46) for E

h
u
�

S
E[S]

�i
leads to

the well-known VIX formula, which is the current market standard for measuring market
stress.

Notice however that some cautiousness is appropriate here, because the convex order in
(54) is an order under the risk-neutral measure, whereas a statement about the variability
of the stock market index is essentially a statement under the measure P.

Taking into account the convex order relation (17)), we �nd from (54) and Jensen�s
inequality that the following inequalities hold for any convex function u:

u (1) � E
�
u

�
S

E[S]

��
� E

�
u

�
Sc

E[S]

��
: (55)

In Cheung et al. (2013) it was proven that if u is strictly convex with absolutely contin-

uous derivative u0 and such that E
h
u
�
Sc

E[S]

�i
is �nite, the swap rate E

h
u
�
Sc

E[S]

�i
fully

characterizes a market with perfect herd behavior in the sense that

E
�
u

�
S

E[S]

��
= E

�
u

�
Sc

E[S]

��
() X is comonotonic. (56)

Note that the expectations in (56) are taken w.r.t the pricing measure Q: As a result, the
righ hand side of this equivalence relation is a statement under the pricing measure Q:
However, as comonotonicity is de�ned in terms of the support of the price vector X and
moreover, P and Q are equivalent measures, we have that comonotonicity in the Q-world
is equivalent with comonotonicity in the P-world.

The lower and upper bounds in (55) do not depend on the actual dependence struc-

ture of the price vector X. Loosely speaking, the quantity E
h
u
�

S
E[S]

�i
� u (1) reveals

information about the dependence structure between the components of the price vector
X. Indeed, for given risk-neutral marginal distributions, we have that an increase of the
co-movement between the components results in an increase of S

E[S] in convex order. From

(54), we �nd that this will also trigger an increase of the quantity E
h
u
�

S
E[S]

�i
�u (1). The

maximal value E
h
u
�
Sc

E[S]

�i
�u (1) will be reached when the price vectorX is comonotonic.

These observations lead to the conclusion that it may be reasonable to measure the T -
year implied herd behavior by the ratio of

�
E
h
u
�

S
E[S]

�i
� u (1)

�
and

�
E
h
u
�
Sc

E[S]

�i
� u (1)

�
,
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for an appropriate convex function u:

ratio =
E
h
u
�

S
E[S]

�i
� u (1)

E
h
u
�
Sc

E[S]

�i
� u (1)

; (57)

provided u(1) < E
h
u
�
Sc

E[S]

�i
< +1. This ratio takes values between 0 and 1, where a

value of 1 represents the comonotonic market situation, whereas a value of 0 follows in
case S = E[S].

Comonotonicity represents the situation where the stocks are non-compensating and
there is no diversi�cation possible. The situation where the price vector X satis�es S =
E [S] can be interpreted as a situation where there is perfect diversi�cation. Indeed, the
stocks are always perfectly compensating each other, resulting in no variability on the
aggregate level. However, for given marginals, this lower bound is only reachable when
the marginals are jointly mixable. The concept of joint mixability as an extreme negative
dependence structure was discussed in Wang and Wang (2011), Wang et al. (2013) and
Bernard et al. (2014).

In practice, only a limited number of strikes are traded, for the individual stocks as
well as for the stock market index. In order to cope with this situation, we propose to
replace the nominator and the denominator in (57) by the approximations (46) and (52),
respectively. These considerations lead to the following de�nition for a �rst class of Herd
Behavior Indices, based on swap rates.

De�nition 2 (Herd Behavior Indices, based on swap rates) Consider the random
vector X representing the stock prices Xi; i = 1; 2; : : : ; n in T years from now. The T -year
implied Herd Behavior Index, based on the convex function u : [0;1)! R with absolutely
continuous derivative u0, notation HIXu [T ], is de�ned by

HIXu [T ] =
erT
Ph

i=�l u
00
�
Ki

E[S]

�
�Ki Q [Ki]�

u00( K0E[S])
2

(E [S]�K0)
2

erT
Ph

i=�l u
00
�
Ki

E[S]

�
�Ki Q

c
[Ki]�

u00( K0E[S])
2

(E [S]�K0)
2
; (58)

provided all u00
�
Ki

E[S]

�
are well-de�ned and �nite, and the denominator is positive.

HIXu [T ] can be interpreted as a T -year forward looking measure for the degree of herd
behavior. The nominator captures the real market situation. It is determined from ob-
served index option prices, see (45) and (46). The denominator captures the comonotonic
market situation and can be determined from observed stock option prices, see (52) and
(53). As no distributional assumptions have to be made, HIXu [T ] is a model-free measure
for the degree of herd behavior in the market. Monitoring this measure on a regular basis
may give insight in the change of the market perception over time concerning co-movement
behavior of the T -year prices of a given set of stocks.
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5.4 Examples

5.4.1 HIX: the Herd Behavior Index

In this subsection, we consider a particular member of the family of herd behavior mea-
sures based on swap rates, as introduced above. This measure was �rst proposed in
Dhaene, Linders, Schoutens and Vyncke (2012), and was baptized the Herd Behavior
Index (HIX).

The HIX corresponds to HIXu [T ] with the function u given by

u (x) = (x� 1)2 ; x � 0:

From (57) it follows that HIX[T ] is based on an approximation of the following ratio:

ratio =
Var [S]
Var [Sc]

:

Taking into account (58), HIX[T ] is de�ned by

HIX [T ] =
2erT

Ph
i=�l�Ki Q [Ki]� (E [S]�K0)

2

2erT
Ph

i=�l�Ki Q
c
[Ki]� (E [S]�K0)

2
: (59)

The T -year HIX is the ratio of an index option-based estimate of the risk-neutral variance
of the market index and a stock option-based estimate of the corresponding variance in
the comonontonic market situation. The HIX can be interpreted as a scaled variance
index, with a time-dependent scaling factor. The observed index option prices are used
to describe the real market situation, while the theory of comonotonicity allows us to
describe the extreme situation via the observed stock option quotes.

A numerical illustration of the 30 days Dow Jones based HIX for the period 2000 -
2009 can be found in Dhaene, Linders, Schoutens and Vyncke (2012). For the particular
dates considered in Figures 1 and 2, the values of the 30 days Dow Jones based HIX
(closing mid-prices) are presented in Table 1.

Suppose now that K0 is su¢ ciently close to the forward rate E [S] ; such that the term
(E [S]�K0)

2 becomes negligible in the expression (59). Furthermore, suppose that the
distance between consecutive traded strikes is constant, i.e. �Ki = �Kj; i; j = �l; : : : ; h.
Then we �nd the following (approximate) expression for the HIX:

HIX [T ] �
Ph

i=�lQ [Ki]Ph
i=�lQ

c
[Ki]

:

In this case, the HIX is equal to the sum of all out-of-the-money index option prices,
divided by the sum of all comonotonic out-of-the-money index option prices
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5.4.2 DHIX: The Downside Herd Behavior Index

Consider the convex function u de�ned by

u (x) =
�
(1� x)+

�2
:

The herd behavior index associated with this function u is called the Downside HIX
(DHIX). We �nd that

DHIX [T ] =
2erT

P0
i=�l�Ki P [Ki]� (E [S]�K0)

2

2erT
P0

i=�l�Ki P
c
[Ki]� (E [S]�K0)

2 ; (60)

provided that K0 < E [S] : In case K0 = E [S] ; u00
�
K0

E[S]

�
is not de�ned. However, we

propose to keep the formula for DHIX[T ] also in this case. The DHIX is based on out-of-
the money put options and can be considered as a measure for the extent to which stock
prices will decline together. The formula for HIX[T ] contains out-of-the money call and
put options; see (59), and is a measure for the extent to which stock price will move (up
or down) together.

In case K0 is su¢ ciently close to the forward rate E [S] and, moreover, �Ki = �Kj;
i; j = �l; : : : ; h; the expression (60) simpli�es to

DHIX [T ] �
P0

i=�l P [Ki]P0
i=�l P

c
[Ki]

:

In this case, DHIX is equal to the sum of all out-of-the-money index put option prices,
divided by the sum of all comonotonic out-of-the-money index put option prices

5.4.3 CIX: The Comonotonicity Index

Until here, we assumed that u is a real-valued function de�ned on [0;+1) �! R with
absolutely continuous derivative on [0;+1). All previously derived expressions and ap-
proximations hold as well for any function u : (0;+1) with absolutely continuous deriv-
ative on (0;+1), provided we assume that any T - year stock price Xi takes values in
(0;+1), with probability 1.
Let us illustrate this remark by considering the herd behavior index HIXu [T ] based

on the function
u (x) = �2 ln x:

This index, which is based on the following ratio:

ratio =
E
h
ln
�

S
E[S]

�i
E
h
ln
�
Sc

E[S]

�i ;
was introduced in Dhaene, Dony, Forys, Linders and Schoutens (2012), where the authors
call it the Comonotonicity Index (CIX).
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From (58), it follows that CIX[T ] is de�ned by

CIX [T ] =
2erT

Ph
i=�l

�Ki

K2
i
Q [Ki]�

�
E[S]�K0

K0

�2
2erT

Ph
i=�l

�Ki

K2
i
Q
c
[Ki]�

�
E[S]�K0

K0

�2 : (61)

Considering the S&P500 and supposing that T = 30 days, one recognizes the VIX
squared formula in the nominator of CIX[T ]; see e.g. Chicago Board Options Exchange
(2003). The methodology adopted by the CBOE can be generalized to other stock market
indices and we will use the term VIX to denote the 30 days implied volatility of a given
stock market index. The denominator can then be interpreted as the comonotonic VIX
squared. This means that the CIX measures herd behavior by comparing the VIX squared
with the maximal attainable value for the VIX squared, which is reached when all the
underlying stocks are moving perfectly together; see also Whaley (2000) and Carr and
Wu (2006).

A numerical illustration of the 30 days - CIX based on the Dow Jones can be found
in Dhaene, Dony, Forys, Linders and Schoutens (2012). For the trading days August 21,
October 23, November 20 and December 18, 2008, the corresponding values of the HIX,
CIX, the ATM comonotonicity gap, as well as the VIX are given in Table 1. One observes
that the values for the HIX and the CIX are almost identical; for a motivation of this
observation we refer to Dhaene, Linders, Schoutens and Vyncke (2012). Note also that
the VIX in October 2008 is lower than the VIX in November 2008:

V IX [Oct 08] < V IX [Nov 08] ;

whereas the opposite ordering holds for the HIX:

HIX [Oct 08] > HIX [Nov 08] :

Table 1: The Dow Jones based VIX, comonotonicity gap, HIX and CIX for the four
di¤erent trading days.

apr-08 Oct-08 nov-08 dec-08

Index price 126.20 86.91 75.52 86.05
VIX 18.84% 65.03% 72.34% 42.76%

ATM Com Gap 61.09% 82.90% 80.39% 75.58%
HIX 36.95% 74.35% 64.89% 58.73%
CIX 36.53% 72.84% 63.34% 56.39%

Finally, remark that the order of the VIX values is in correspondence with the convex
ordering observed in Figure 1.
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6 Distorted expectations and implied herd behavior

6.1 Distorted expectations in terms of observed option prices

A distortion function is a non-decreasing function g : [0; 1] ! [0; 1] such that g(0) = 0
and g(1) = 1. The distorted expectation of the stock index S; associated with distortion
function g, notation �g [S], is de�ned by

�g [S] =

Z +1

0

g (1� FS(s))ds: (62)

Throughout this section we assume that the derivate of the distortion function g is
well-de�ned and �nite on [0; 1], where a derivative in an endpoint has to be understood as
a right or left derivative, and that g0 is absolutely continuous on [0; 1]. In this case, �g [S]
is �nite and can be expressed as

�g [S] = g
0(1)E [S]�

Z 1

0

(1� q) g00(1� q) TVaRq [S] dq; (63)

see e.g. Cheung et al. (2013).

From (10), it follows that one can rewrite the distorted expectation �g [S] as a mixture
of TVaR�s and LTVaR�s:

�g [S] =g
0 (1� FS (E [S]))E [S] +

Z FS(E[S])

0

q g00(1� q) LTVaRq [S] dq (64)

�
Z 1

FS(E[S])
(1� q) g00(1� q) TVaRq [S] dq:

Taking into account (6) and (9), we �nd that

TVaRq [S] = F�1S (q) +
erT

1� qC
�
F�1S (q)

�
; (65)

LTVaRq [S] = F�1S (q)� e
rT

q
P
�
F�1S (q)

�
; (66)

which holds for any q 2 (0; 1). Inserting (65) and (66) in (64), and taking into account
the well-known equivalence relation

q � FS (E [S]), F�1S (q) � E [S] ;

leads to an expression for �g [S] in terms of prices of put option with strikes smaller than
or equal to E [S] and call options with strike larger than E [S]. Loosely speaking, this is
a model-free expression for �g [S] in terms of out-of-the-money option prices.

As before, we assume that the index option prices C [K] and P [K] can only be observed
for a limited number of strikes, see (24). Here, we additionally assume that K�l = 0, and
that Kh+1 = F

�1
S (1) is known and �nite.
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In order to �nd a reasonable approximation for �g [S], based on the available option
data, let us �rst approximate the partially known convex index call option curve C by
the piecewise linear convex function C connecting the observed points (Kj; C [Kj]) ; for j
= �l; : : : ; h+ 1. Introducing the notation S for a r.v. with cdf determined by

FS(s) = 1 + e
rT C

0
[s+];

we �nd that

FS(s) =

8>><>>:
0 if s < 0;

1 + erT
C [Kj+1]� C [Kj]

Kj+1 �Kj

if Kj � s < Kj+1;
(j = �l; : : : ; h+ 1)

1 if s � Kh+1;

(67)

is the cdf that leads to the option curve C. In the sequel, we always assume that FS is
strictly increasing in the traded strikes, in the following sense: if FS(Kj) > 0; then
FS(Kj) > FS(Kj�1) for j = �l; : : : ; h + 1, with K�l�1 = �1 by convention. If this
condition is initially not satis�ed, we decrease the set of observed points until it is satis�ed.

From (67) one can determine the inverse of FS. Indeed, for any j = �l; : : : ; h+ 1, we
�nd that F�1

S
(q) is given by

F�1
S
(q) = Kj; if FS(Kj�1) < q � FS(Kj): (68)

Next, we propose to approximate the distorted expectation �g [S] by �g
�
S
�
. Similar

to (64), �g [S] can be expressed as

�g
�
S
�
=g0 (1� FS (E [S]))E [S] +

Z FS(E[S])

0

q g00(1� q) LTVaRq
�
S
�
dq

�
Z 1

FS(E[S])
(1� q) g00(1� q) TVaRq

�
S
�
dq: (69)

From (6), (9) and (68), we �nd that TVaRq
�
S
�
and LTVaRq

�
S
�
can be determined

from the observed option curve. Indeed, for any j = �l; : : : ; h+ 1, they are given by

TVaRq
�
S
�
= Kj +

erT

1� qC [Kj] ; if FS (Kj�1) < q � FS (Kj) (70)

and

LTVaRq
�
S
�
= Kj �

erT

q
P [Kj] ; if FS (Kj�1) < q � FS (Kj) ; (71)

respectively.

From K0 � E [S] < K1, it follows that FS (E [S]) = FS (K0). Inserting (70) and (71) in
(69), we �nd an expression for �g

�
S
�
in terms of traded out-of-the-money index options.

We introduce the following notation:

pj = FS (Kj) ; j = �l;�l + 1; : : : ; h+ 1:
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Furthermore, we de�ne p�l�1 = 0: Note also that ph+1 = 1 and FS (E [S]) = p0: Further-
more, we de�ne the constants cj and dj as follows:

cj = g
0 (1� pj)� g0 (1� pj�1) ; j = �l; : : : ; h+ 1; (72)

and

dj =

8>><>>:
pj�1g

0 (1� pj�1)� pjg0 (1� pj) + g (1� pj�1)� g (1� pj) ;
j = �l; : : : ; 0

(1� pj) g0 (1� pj)� (1� pj�1) g0 (1� pj�1) + g (1� pj�1)� g (1� pj) ;
j = 1; : : : ; h+ 1

(73)
Note that the constants cj and dj are always well-de�ned and �nite because we assumed
that the derivative g0 is always well-de�ned and �nite in [0; 1] : We can now rewrite the
�rst integral of expression (69) as follows:Z FS(E[S])

0

qg00(1� q) LTVaRq
�
S
�
dq =

0X
j=�l

Z pj

pj�1

qg00(1� q)LTVaRq
�
S
�
dq (74)

=
0X

j=�l

Kj

Z pj

pj�1

qg00(1� q)dq (75)

� erT
0X

j=�l

P [Kj]

Z pj

pj�1

g00(1� q)dq;

where we used expression (71) in the last step. Calculating the two integrals in expression
(75) results inZ FS(E[S])

0

qg00(1� q)LTVaRq
�
S
�
dq =

0X
j=�l

�
erTP [Kj] cj +Kj dj

�
:

Similarly, we can rewrite the second integral of expression (69) as follows:

�
Z 1

FS(E[S])
(1� q) g00(1� q)TVaRq

�
S
�
dq =

h+1X
j=1

�
erTC [Kj] cj +Kj dj

�
:

Combining these expressions, we �nd the following explicite expression for �g
�
S
�

�g
�
S
�
= g0 (1� p0)E [S] +

h+1X
j=�l

�
erTQ [Kj] cj +Kj dj

�
; (76)

where Q is de�ned as follows:

Q [Kj] =

�
P [Kj] ; if j = �l; : : : ; 0;
C [Kj] ; if j = 1; : : : ; h+ 1:

: (77)
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We �nd that �g
�
S
�
is a model-free approximation for �g [S], in terms of observed

index option prices. Notice however that this approximation depends on the choice of the
maximal strike Kh+1; because of the term Kh+1 dh+1 in the expression (76). The term
dh+1 is given by

dh+1 = g (1� ph)� (1� ph) g0 (1� ph) : (78)

Notice that ph depends on the choice of Kh+1 :

ph = 1� erT
C [Kh]

Kh+1 �Kh

:

The contribution of the term Kh+1dh+1 in the expression (76) will be negligible for a
su¢ ciently large Kh+1; provided

lim
Kh+1!+1

Kh+1dh+1 = 0:

6.2 Distorted expectations in case of perfect herd behavior

Let us now consider the comonotonic market situation. In this case, the distorted expec-
tation is given by �g [Sc] ; with Sc de�ned in (16). Due to the �nite number of traded stock
option prices, see (23), we cannot determine �g [Sc]. Therefore, we propose to approxi-
mate it by �g

�
S
c�
, with S

c
de�ned in (31). From the comonotonic additivity property of

distorted expectations, it follows that

�g
�
S
c�
=

nX
i=1

wi �g
�
X i

�
; (79)

see e.g. Wang (1996) or Dhaene, Kukush, Linders and Tang (2012).

The distorted expectation �g
�
X i

�
corresponding to stock i can be expressed as

�g
�
X i

�
= g0

�
1� FXi

(E [Xi])
�
E [Xi] +

Z FXi
(E[Xi])

0

q g00(1� q) LTVARq
�
X i

�
dq

�
Z 1

FXi
(E[Xi])

(1� q) g00(1� q) TVARq
�
X i

�
dq: (80)

Taking into account (6), (9) and (30), we �nd for any j = �li; : : : ; hi + 1, that

TVaRq
�
X i

�
= Ki;j +

erT

1� qCi [Ki;j] ; if FXi
(Ki;j�1) < q � FXi

(Ki;j) (81)

and

LTVaRq
�
X i

�
= Ki;j �

erT

q
Pi [Ki;j] ; if FXi

(Ki;j�1) < q � FXi
(Ki;j) : (82)

From Ki;0 � E [Xi] < Ki;1, it follows that FXi
(E [Xi]) = FXi

(Ki;0). Inserting (81)
and (82) in (80) leads to an expression for �g

�
X i

�
in terms of traded out-of-the-money

options on stock i. The value of �g
�
S
c�
can then be determined from (79).
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One can prove that the distorted expectation �g
�
X i

�
can be determined in a model-

free way using observed stock option prices. Indeed, similar derivations than the one that
have led to (76), result in

�g
�
X i

�
= g0 (1� pi;0)E [Xi] +

hi+1X
j=�li

�
erTQi [Ki;j] ci;j +Ki;j di;j

�
; (83)

where the Qi and the constants ci;j and di;j are de�ned in a similar way as in (77), (72)
and (73), respectively.

6.3 Measuring the degree of herd behavior in terms of distorted
expectations

Consider two points in time, t and t0, with 0 � t � t0. It is well-known that the following
inequality holds for any concave distortion function:

S

E[S]
�cx

S 0

E0[S 0]
=) �g

�
S

E[S]

�
� �g

�
S 0

E0[S 0]

�
; (84)

where we use the notations and conventions introduced in (27). For the special case
of concave distortion functions with an absolute continuous derivate, this implication
follows from (13) and (64). From (84), we can conclude that an increase in convex order
of the forward de�ated time-T index price level leads to an increase of the corresponding
distorted expectation. Monitoring the quantity �g

h
S
E[S]

i
= �g [S]

E[S] gives information about
the changing variability of the T -year index price over time.

Taking into account the convex order relation (17), we �nd from (84) that for any
concave distortion function the following inequalities hold:

E [S] � �g [S] � �g [Sc] : (85)

In Cheung et al. (2013) it was proven that if g is a strictly concave distortion function,
the distorted expectation �g [Sc] fully characterizes a market with perfect herd behavior:

�g [S] = �g [S
c]() X is comonotonic. (86)

Loosely speaking, the di¤erence �g [S] � E [S] will increase when the co-movement
between time-T stock prices becomes stronger. It will reach its maximal value when the
underlying price vector X is comonotonic. Therefore, in a distorted expectations frame-
work, it may be reasonable to de�ne the T -year implied herd behavior index as the ratio
between the di¤erences �g [S] � E [S] and �g [Sc] � E [S], for an appropriately chosen
concave distortion function g:

ratio =
�g [S]� E [S]
�g [Sc]� E [S]

;
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provided E [S] < �g [Sc]. This ratio takes values in [0; 1] ; where a value of 0 corresponds
to the case where �g [S] = E [S], while a value of 1 represents the comonotonic market
situation. For given marginals, the value of 1 is always reachable, whereas a value of 0 is
only reachable when the marginals are jointly mixable.

In order to cope with the �nite number of traded strikes, we propose to replace S and
Sc by the approximations S and S

c
, respectively. Taking into account the comonotonic

additivity property (79), leads to the following de�nition for the Herd Behavior Index.

De�nition 3 (Herd Behavior Index based on distorted expectations) Consider the
random vector X representing the stock prices Xi; i = 1; 2; : : : ; n at time T . The T -year
implied Herd Behavior Index, based on the concave distortion function g with absolute
continuous derivative, notation HIXg [T ], is de�ned by

HIXg [T ] =
�g
�
S
�
� E [S]Pn

i=1wi �g
�
X i

�
� E [S]

; (87)

provided the denominator is positive.

The Herd Behavior Index de�ned in (87) can be determined from the available option
prices. The nominator captures the real market situation. From (69), (70) and (71),
it follows that it can be determined from traded index option prices. The denominator
captures the comonotonic market situation and can be determined from available stock
option prices, see (80), (81) and (82). As no assumption has to be made concerning the
stock price dynamics, HIXg [T ] is a model-free measure for the degree of herd behavior in
the market.

6.3.1 Example

A possible candidate for the distortion function g is the MINVAR distortion function with
parameter �, as introduced in Cherny and Madan (2009):

g(q) = 1� (1� q)1+� ; q 2 [0; 1] and � > 0: (88)

Note that g is a concave distortion function and that its derivative g0 is well-de�ned and
�nite in [0; 1]. We have that g0 (q) = (1 + �) (1� q)� :
As an example, consider � = 1. The distorted expectation �g

�
S
�
then follows from

the expression (76) where the cj and dj are given by

cj = 2 (pj � pj�1) ; j = �l;�l + 1; : : : ; h+ 1;

and

dj =

�
p2j�1 � p2j ; j = �l; : : : ; 0;

(pj � pj�1) (2� pj � pj�1) ; j = 1; : : : ; h+ 1:

Similar expressions can be derived for the distorted expectations �g
�
X i

�
of the individual

stocks.
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Figure 4: The smoothed MINVAR herd behavior index HIXg [30 days] , where g is the
MINVAR distortion function with parameter � = 1 (solid line), � = 10 (dashed line) and
� = 25 (dotted line).

For a MINVAR distortion function with parameter � = 1 we �nd that

Kh+1 dh+1 =

�
erTC [Kh]

�2�p
Kh+1 � Khp

Kh+1

�2 ;
and hence limKh+1!+1 Kh+1dh+1 = 0: This means that the contribution of the term
Kh+1dh+1 in the expression (76) becomes negligible if Kh+1 is su¢ ciently large.

Consider the Dow Jones Industrial Average (DJ). Figure 4 shows the herd behavior
index DJ �HIXg [30 days] for the MINVAR distortion function (88), with � = 1 (solid
line), � = 10 (dashed line) and � = 25 (dotted line), based on closing midprices for the
period January 2000 - October 2009. The graph is smoothed by taking at each trading
day the average over the past 7 trading days. For a detailed description of the data
and the numerical issues, we refer to Dhaene, Linders, Schoutens and Vyncke (2012). A
comparison of the (smoothed) MINVAR herd behavior index with � = 10 and the Herd
Behavior Index HIX[T ] de�ned in (59) is given in Figure 5

7 Conclusion

In this paper, we introduced several indices which can be used to measure the implied
degree of co-movement between the time-T prices of the stocks of a given stock market
index. The de�nitions of these indices are based on a comparison between the real market
situation, which can be observed via traded index option prices, and the synthetic market
situation where all prices move perfectly together. The theory of comonotonicity allows
us to construct this synthetic (non-observed) market situation from the observed stock

28



Jan00 Jan01 Jan02 Jan03 Jan04 Jan05 Jan06 Jan07 Jan08 Jan09 Jan10

0.2

0.3

0.4

0.5

0.6

0.7

Herd Behavior Indices (30 days, smoothed)

The HIX
MINVAR HIX ( λ=10)

Figure 5: Smoothed version of the Herd Behavior Index HIX [30 days] and the MINVAR
Herd Behavior Index HIXg [30 days] with parameter � = 10:

option prices. The comonotonicity gap refers to the distance between the observed and
the synthetic index option curves. A small gap is a sign for a high degree of implied herd
behavior, as we approach the situation where all prices move unison. A herd behavior
index captures the comonotonicity gap in a number between 0 and 1, where a value of
1 is equivalent with a comonotonic vector of time-T stock prices, whereas a value of 0 is
equivalent with a price vector where the stocks are always perfectly compensating.

We proposed two families of herd behavior measures. A �rst family is constructed
by summarizing the index option curve in the swap rate E

h
u
�

S
E[S]

�i
, for an appropriate

convex function u. This swap rate can be expressed as a combination of out-of-the-money
index call and put options. Furthermore, this swap rate preserves convex order and its
maximal value is attained when the underlying price vector is comonotonic. The swap
rate E

h
u
�
Sc

E[S]

�i
, corresponding to the comonotonic situation, can be expressed in terms

of stock option prices. The degree of herd behavior is then de�ned as the ratio of the
(approximate) values of the swap rate and its comonotonic modi�cation. The resulting
measure is model-free, forward looking and can be determined from observed option data.

A second family of herd behavior measures is based on the observation that the dis-
torted expectation �g [S], with concave distortion function g, can be expressed in terms
of out-of-the-money index option data. Furthermore, such concave distorted expectations
preserve convex order and attain their maximal value when the underlying price vector
is comonotonic. The distorted expectation �g [Sc], corresponding to the comonotonic sit-
uation, can be expressed in terms of stock option prices. The degree of herd behavior is
then de�ned as the ratio of the (approximate) values of the distorted expectation and its
comonotonic modi�cation. Again, the resulting index is model-free, forward looking and
can be determined from available option data.

Acknowledgement: Daniël Linders, Jan Dhaene and Wim Schoutens acknowledge
the �nancial support of the Onderzoeksfonds KU Leuven (GOA/13/002: Management

29



of Financial and Actuarial Risks: Modeling, Regulation, Disclosure and Market E¤ects).
Daniël Linders and Jan Dhaene also acknowledge the support of the AXA Research Fund
(Measuring and managing herd behavior risk in stock markets).

References

Austing, P. (2014), Smile Pricing Explained, Financial Engineering Explained, Palgrave
Macmillan.

Bekaert, G., Hodrick, R. J. and Zhang, X. (2009), �International stock return comove-
ments�, The Journal of Finance 64(6), 2591�2626.

Bernard, C., Jiang, X. and Wang, R. (2014), �Risk aggregation with dependence uncer-
tainty�, Insurance: Mathematics and Economics 54(1), 93 �108.

Breeden, D. T. and Litzenberger, R. H. (1978), �Prices of state-contingent claims implicit
in option prices�, Journal of Business 51(4), 621�51.

Carr, P., Geman, H., Madan, D. B. and Yor, M. (2011), �Options on realized variance and
convex orders�, Quantitative Finance 11(11), 1685�1694.

Carr, P. and Madan, D. (2001), Towards a theory of volatility trading, in �Option Pricing,
Interest Rates and Risk Management�, Cambridge University Press, pp. 458�476.

Carr, P. and Wu, L. (2006), �A tale of two indices�, The Journal of Derivatives 13(3), 13�
29.

Chen, X., Deelstra, G., Dhaene, J., Linders, D. and Vanmaele, M. (2015), �On an optimiza-
tion problem related to static super-replicating strategies�, Journal of Computational
and Applied Mathematics 278, 213�230.

Chen, X., Deelstra, G., Dhaene, J. and Vanmaele, M. (2008), �Static super-replicating
strategies for a class of exotic options�, Insurance: Mathematics & Economics
42(3), 1067�1085.

Cherny, A. and Madan, D. (2009), �New measures for performance evaluation�, Review of
Financial Studies 22(7), 2571�2606.

Cheung, K. C., Dhaene, J., Kukush, A. and Linders, D. (2013), �Ordered random vectors
and equality in distribution�, Scandinavian Actuarial Journal .

Chicago Board Options Exchange (2003), The CBOE volatility index - VIX,White Paper.

Chicago Board Options Exchange (2009), CBOE S&P 500 implied correlation index,
Working Paper.

Deelstra, G., Dhaene, J. and Vanmaele, M. (2011), An overview of comonotonicity and
its applications in �nance and insurance, in B. Oksendal and G. Nunno, eds, �Advanced
Mathematical Methods for Finance�, Springer Berlin Heidelberg, pp. 155�179.

30



Denuit, M., Dhaene, J., Goovaerts, M. and Kaas, R. (2005), Actuarial Theory for De-
pendent Risks: Measures, Orders and Models, John Wiley & Sons, Ltd, Chichester,
UK.

Dhaene, J., Denuit, M., Goovaerts, M., Kaas, R. and Vyncke, D. (2002a), �The concept
of comonotonicity in actuarial science and �nance: theory�, Insurance: Mathematics &
Economics 31(1), 3�33.

Dhaene, J., Denuit, M., Goovaerts, M., Kaas, R. and Vyncke, D. (2002b), �The concept of
comonotonicity in actuarial science and �nance: applications�, Insurance: Mathematics
& Economics 31(2), 133�161.

Dhaene, J., Dony, J., Forys, M. B., Linders, D. and Schoutens, W. (2012), Fix - the fear
index: Measuring market fear, in �Topics in Numerical Methods for Finance, Cummins
M. et al. (eds.). Springer Proceedings in Mathematics and Statistics�.

Dhaene, J., Kukush, A., Linders, D. and Tang, Q. (2012), �Remarks on quantiles and
distortion risk measures�, European Actuarial Journal 2, 319�328.

Dhaene, J., Linders, D., Schoutens, W. and Vyncke, D. (2012), �The herd behavior index:
A new measure for the implied degree of co-movement in stock markets�, Insurance:
Mathematics and Economics 50(3), 357�370.

Dhaene, J., Linders, D., Schoutens, W. and Vyncke, D. (2014), �Amultivariate dependence
measure for aggregating risks�, Journal of Computational and Applied Mathematics
263(0), 78 �87.

Dhaene, J., Vandu¤el, S., Goovaerts, M., Kaas, R., Tang, Q. and Vyncke, D. (2006), �Risk
measures and comonotonicity: a review�, Stochastic Models 22, 573�606.

Dhaene, J., Wang, S., Young, V. and Goovaerts, M. J. (2000), �Comonotonicity and
maximal stop-loss premiums�, Bulletin of the Swiss Association of Actuaries 2, 99 �
113.

Embrechts, P., McNeil, A. and Straumann, D. (1999), Correlation and dependence in
risk management: properties and pitfalls, in �Risk Management: Value at Risk and
Beyond�, Cambridge University Press, pp. 176�223.

Fonseca, J., Grasselli, M. and Tebaldi, C. (2007), �Option pricing when correlations are
stochastic: an analytical framework�, Review of Derivatives Research 10(2), 151�180.

Garcia, J., Goossens, S., Masol, V. and Schoutens, W. (2009), �Levy base correlation�,
Wilmott Journal 1, 95�100.

Harmon, D., De Aguiar, M. A., Chinellato, D. D., Braha, D., Epstein, I. and Bar-Yam,
Y. (2011), �Predicting Economic Market Crises Using Measures of Collective Panic�,
SSRN eLibrary .

Hobson, D., Laurence, P. and Wang, T. (2005), �Static-arbitrage upper bounds for the
prices of basket options�, Quantitative Finance 5(4), 329�342.

31



Kleykamp, D. and Liu, W.-C. (2012), �Assessing co-movements in world equity markets�,
Tamkang Journal of International A¤airs 16(1), 1�46.

Koch, I. and De Schepper, A. (2011), �Measuring comonotonicity in m-dimensional vec-
tors�, ASTIN Bulletin 41, 191�213.

Laurence, P. (2008), A new tool for correlation risk management: the market implied
comonotonicity gap, Global Derivatives, Paris, Invited Talk, May 2008.

Linders, D., Dhaene, J., Hounnon, H. and Vanmaele, M. (2012), Index options: a model-
free approach, Research report AFI-1265 FEB, Leuven: KU Leuven - Faculty of Busi-
ness and Economics.

Linders, D. and Schoutens, W. (2014a), Basket option pricing and implied correlation in
a Lévy copula model, Research report AFI-1494, FEB, KU Leuven.

Linders, D. and Schoutens, W. (2014b), �A framework for robust measurement of implied
correlation�, Journal of Computational and Applied Mathematics 271, 39�52.

Madan, D. B. and Schoutens, W. (2013), �Systemic risk tradeo¤s and option prices�,
Insurance: Mathematics and Economics 52(2), 222�230.

Shaked, M. and Shanthikumar, J. G. (2007), Stochastic orders, Springer.

Skintzi, V. D. and Refenes, A. N. (2005), �Implied correlation index: A new measure of
diversi�cation�, Journal of Futures Markets 25, 171�197. doi: 10.1002/fut.20137.

Tavin, B. (2013), Hedging dependence risk with spread options via the power Frank
and Power Student t copulas, Technical report, Université Paris I Panthéon-Sorbonne.
Available at SSRN: http://ssrn.com/abstract=2192430.

Wang, B. and Wang, R. (2011), �The complete mixability and convex minimization prob-
lems with monotone marginal densities�, Journal of Multivariate Analysis 102(10), 1344
�1360.

Wang, R., Peng, L. and Yang, J. (2013), �Bounds for the sum of dependent risks and worst
value-at-risk with monotone marginal densities�, Finance and Stochastics 17(2), 395�
417.

Wang, S. (1996), �Premium calculation by transforming the layer premium density�,
ASTIN Bulletin 26(1), 71�92.

Whaley, R. (2000), �The investor fear gauge�, Journal of Portfolio Management 26, 12�17.

32



 

 

 

FACULTY OF ECONOMICS AND BUSINESS 
Naamsestraat 69 bus 3500 

3000 LEUVEN, BELGIË 
tel. + 32 16 32 66 12 
fax + 32 16 32 67 91 

info@econ.kuleuven.be 
www.econ.kuleuven.be 


	vb onderzoeksrapport voorblad
	HIX2-2014-12-19
	vb onderzoeksrapport achterblad

